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Abstract. A simple analytic expression for the general Talmi-Moshinsky harmonic oscil- 
lator bracket is derived. This expression is expected to be more convenient, from the point 
of view of numerical computations, than the others available in the literature. 

1. Introduction 

In many nuclear physics problems one needs to perform a transformation on the 
two-particle system from single-particle coordinate basis to the centre-of-mass and the 
relative coordinate basis. When one expresses the single-particle wavefunctions in the 
harmonic oscillator basis, this transformation is represented in terms of the well-known 
Talmi-Moshinsky bracket (TMB) (Talmi 1952, Moshinsky 1959, Smirnov 1961). In 
general one tries to approximate the general wavefunction in terms of the harmonic 
oscillator wavefunctions and then uses this transformation. In such problems one 
requires the computation of a large number of TMBs. 

Because of the history of the problem, many attempts have been made in the past to 
obtain for this bracket a simple, analytic expression which is also useful from the 
computational point of view. Various computer programs exist corresponding to these 
attempts. Mention can be made of at least two such programs, one by Sontona and 
Gmitro (1972), which is based on a formula from Trlifaj (1972), and the other by Feng 
and Tamura (1975), which is based on an expression obtained by Baranger and Davies 
(1966). From the point of view of analytic simplicity, the formula of Trlifaj (1972) is 
much better and generally it has also proved to be more useful computationally. In 
addition, various symmetrical analytical expressions also exist for this bracket which 
are, however, not very convenient for numerical computation (Bakri 1967, €3 Buck 
1970, unpublished, quoted by Talman 1970, Talman 1970). The results of these 
attempts are essentially variants of a formula due to Kumar (1966). 

Recently, Dobez (1977) has reattempted the problem following Trlifaj’s procedure 
(1972) of skilfully specialising one vector. Dobez (1977) has arrived at a formula which 
has proved to be more efficient than that of Trlifaj (1972) but itinuolves a larger number 
o f  summations. The computational advantage is derived from the possibility of 
expressing the various expressions for the TMB as a sum of a qcantity which factorises 
into a radial quantum number dependent (non-geometrical) part and a radial quantum 
number independent (geometrical) part. In Dobez’ (1977) formula this sum has only 
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one overlapping index o f  summation, whereas in Trlifaj’s (1972) this number is three, 
which gives the computational advantage to Dobez’. 

In this paper, we have also followed Trlifaj’s (1972) procedure of fixing one of the 
momenta (Trlifaj used it for the 1 = 0 case only, but we are using it for the general 
TMB). We have also used some angular momentum techniques to arrive at a still 
simpler expression. In our formula the total number of summations is seven, i.e. the 
same number as in Trlifaj’s (1972) but three less than those in Dobez’; but when one 
expresses our formula as a sum of factorised expressions as described above, there is 
only one overlapping summation. Thus our formula, which combines the advantages of 
both Trlifaj’s and Dobez’, should be more advantageous computationally than the 
others under consideration. We hope to manifest this advantage quantitatiuely by 
actually writing a useful computer program. 

One disturbing feature still remains. Except for the formulae of the type of Kumar’s 
(1966), none of the others quoted above, including our own, manifest the obvious 
symmetries of the bracket. The procedure of Trlifaj is obviously not symmetrical and 
the results derived from it are thus also not so. We believe that it should be possible to 
derive a simpler expression for the TMB, which manifests its symmetries and is faster 
computationally. Though our attempt may prove to be a step in this direction, we have, 
unfortunately, not been able to achieve our final goal. 

The plan of this paper is as follows: in the next section we present the notations for 
completeness and also derive a formula which we use in the last section to arrive at a 
useful, simple and analytic expression for the TMB. In the last section we also compare 
our expression with some of the previous results. 

2. Notations and mathematical formulation 

where 

4 ; ( r )  = c,ir’ exp(-~r2)Lj;“(r2)yr;(;) (3) 

is the normalised three-dimensional harmonic osciilator wavefunction. In equation (3) 
the normalisation constant cni and the Laguerre polynomial Lf;c1(r2) are given by 

In the previous equations, in place of the position vector x, we have used an 
argument r related to it by 

r = (mw/ri)1’2x. 
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Note that m l ,  m2,  m,  = (mlmz) / (ml+  m2), mCM = m l  + m2 are the masses used in the 
above relation for r l ,  r2, r and R respectively. 

The single-particle coordinates r l ,  r2 are related to the relative and the centre-of- 
mass coordinates r, R by 

1 1 / 2  D 1 / 2  

rl=(-) l + D  r+(-) 1 + D  R, 

D 1 / 2  1 1 / 2  

r2=-(-) l + D  r+(-) l + D  R, 

where D = m1/m2 is the mass ratio. Note that the transformation given in equations 
(6a )  and (6b)  is orthogonal. We can invert equations (1) and (2) to obtain 

4yl'zl (r1)4T2?2(r2)=x s, ,ml+mz(l1? m l ;  12, mzl A ,  l * ) A E l i l , n z l 2 : ~ ,  (1') 

The transformation coefficient (nl, N L ;  A Inlll, n212; A )  known as the Talmi- 
Moshinsky bracket (TMB), which we wish to compute, is defined by 

Evidently we can write 

which, on using equation (2'), becomes 

= 1 S,,ml+m2(11, m l ;  12, m21A, l*)(nl,NL; A bill, n212; A)BE~.NL. (10) 
nlNLh 

Comparing equations (9) and (lo), we arrive at 

( I l ,  m l ;  12, m2/A, ml+mz)(nl, N L ;  A Inlll, n212; A )  

(1 1) m2;m,M = S m l + m z , m + ~ ( I ,  m ;  L, M I A ,  m +MJCm'i' nl l,n21z;nl,NL. 
mM 

Equations (8) and (11) define the procedure which we shall be following to obtain a 
simple analytic expression for the TMB represented by (nl, NL;  h I n111,11212; A ). 

3. A simple expression for the general Talmi-Moshinsky bracket 

In order to obtain the coefficients Cr ,71~:2 '~ ;~NL defined in equation (8), we must 
expand the product 4r l j1 ( r l )$TJ2( r2 )  in terms of the products 4z(r)4EL(R).  For this 
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purpose, noting equation (6), we find 

and 

using a well-known formula (Varshalovich er a1 1975). 

Li1+f (r: )LkZ+' (r;) 

Further, using equations (5) and (6) ,  we get 

and 
exp [- $(r? + Y; 11 = exp [- $(r2 i- R '11. 

We shall also require 

where - k s q s k and the summation over k is such that k and $ ( p  - k )  are both 
non-negative integers. This result can be obtained by using equation (5.8.3) in 
Edmonds (1960) with ak in place of k,  differentiating p times with respect to cy and 
replacing cy finally by 0. 

Now equations (3)-(5) and (12)-(16) give 

d 3  (r1)4nm;iz (4 
= ~ ? T ~ / ~ c , ~ ~ ~ ~ c ~ ~ ~ ~  exp [-~(r2+R2)][(211+ 1)!(212+ 1)!]1/2r(nl+ l I+$)r(nz+i2+?)  

x 1 (- l ) ~ Z + f l + ' Z + P Z f q  

A i l * i A z w z  
t i t z ~ i ~ z k q  

( A I , P I ;  [ I - ~ I ,  ~ I - P I ~ ~ I ,  md(A2, P Z ;  L - A 2 ,  m z - ~ z ~ l z ,  md 
X 

[(2A1+1)!(211-2A1+ 1)!(2Az+1)!(2/2-2Az+ I)!]''' 

X (P1 +PZ)! 
( n  - t l )  !(nz - t z )  ! u t l  + il + ;)r(t, + iz + $)pl ! p 2 )  ! ( t l  - pl) ! ( t2  - p 2 ) !  

X [$(pi + PZ - k)l!F($(pi + PZ + k + 3)) 
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' 1 - 4  

-r2+- R ' )  
D ~ ( ~ ~ - A ~ + A ~ + P , + P ~ )  1 

X- (1 + D)k(11+b)+Pi+h (1 + D 1 + D 

1981 

1 f 2 - k  

r2  + - R ') D 
'(G l + D  

From the above, i t  is easy to project out the angular part YI"(P)Y?(R), where 
m = p l + p 2 + q  a n d M = m l + m 2 - - p l - p 2 - q  (so that m l + m 2 = m + M )  by making 
use of standard angular momentum techniques. Indeed 0 S 1 s A + A + k and 0 s L =z 
l1 -t l 2  - A 1 - A 2  + k in the projection from the term 

Y- h"; (r*) Y :; ( i )Yi  (i) Y ;L;y1 (R  ) Y m2- /2-A2 yli )Y kq( R ) , 
where the lower bounds on 1 and L may not be achieved. (Note that 

where if, e.g. 11 = max(l1, 12, E3), lmin s ll  s 1 + 12 + 1 3 ,  where lmin is defined as max(0, 1, - 
1 2 -  13, I ml+ m2+ m3 I).) 

The coefficient of this term is rA1+A2+P1fP2R 1 1 + 1 2 - A 1 - A 2 + p 1 + p 2  times a multinomial in r, 
R. Since p1 + p 2  - k 3 0 ,  the powers of both r and R are no less than the upper bounds of 
1 and L respectively. Thus we have the possiblity of having in our expression for 
q5rJ1 ( r 1 ) 4 3 2 ( r 2 )  all values of 1 and L allowed by the angular momentum consideration 
in any term. 

Next we project out exp [-$(r2 t R2)]r1Y;"( i )RLYr(R).  Then the coefficient C of 
exp [-t(r2+ R2)]r'Y;t(r")R Y L ( ~ )  in q5rlt1 (rl)dY2?2(rz) is given by L M  

c = s ~ T ~ ' ~ c , ~ ~ ~ c , ~ ~ ~ [ ( ~ ~ ~ ~  1 ) ! ( 2 / 2 + 1 ) ! ] ' / 2 r ( n l + ~ 1 + ~ ) r ( n 2 + / 2 $ . 5 )  

1 (- 1 ) A + f + f2+p2+ m - w -- F~ 

1 ~ 1 A 2 ~ 2  
I ~ ~ Z P I P Z ~  

( A I , ~ I ; ~ I - A I ,  m I - p 1 / 1 I , m d ( A 2 , p ~ ;  12-A~~m2-p2112,m2) 
X 

[ ( 2 A 1 +  1)!(211-2Ai + 1)!(2A2+ 1 ) ! ( 2 1 2 - 2 A 2 +  

1 
X 

( n l -  t1 ) ! (n2-  t2)!r(t l  + l1 +5)r(t2+ 12++)p1!~2!(rl  -pl)!(t2-p2)![i(p1 + p 2  - k ) ] !  

Ut(p1 + p 2  + k + 3)) 
X ( P l +  P 2 ) !  A l + A 2 + ~ l + p 2 - 1 ~  I l + l z - A l - A Z + p 1 + p 2 - L  
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Because of the energy conservation requirement 

2nl+2n2+ 11 + 12 = 2n + 2 N  + 1 + L, (20) 
and the fact that nl ,  11, n2, 12, 1, L are fixed in equation (19), the sum in this equation is 
over only one independent variable. Henceforth, we shall indicate only one such 
variable in our summations. 

At this stage we use a generalisation of the r -+ 0 technique previously used by 
Trlifaj(1972) specifically for the 1 = 0 case. Essentially the same method was also used 
by Dobez (1977) though after following some expansions of the products of Laguerre 
polynomials in a manner different from (and more complicated than) ours. In equation 
(19), it is trivial to calculate the r -+ 0 limit. Indeed 

(21) m ,m ' m M  
1 +f (0)LLN'f (R 2 ) .  C(r -+ 0) = C Cn1111,~~i2:nl,NL~nlCNLLn 

n 

In equation (18), however, when we approach this limit, only those terms with 

I = A 1 + A 2  +pi  + p 2  (22) 
survive. Since also 1 s A + A 2  + k from angular momentum considerations where 
k < p 1  + p 2  we are forced to take 

k = p 1 + ~ 2 .  (23) 
(Note that k is to be such that both k and i(pl + p 2 -  k)  are non-negative integers. The 
special choice k = p1 + p 2  satisfies both these requirements.) Thus 1 is obtained from the 
three angular momenta A l ,  A 2  and k in the most stretched configuration. The outcome 
of the above analysis is that in order to obtain C(r + 0) from equation (18), we may take 
p 2  and A 2  as dependent upon other summation indices, as given in equations (22) and 
(23) above. Subsequently we shall explicitly eliminate p 2  and add a delta function 
S l , A l + A z + k  in the equations to remind us of the condition 1 = A 1  + A 2  + k. 

Now since 

Y Cl( F ) Y E Z (  F )  

x (11, m l ;  12,  m21 I ,  m l +  m2)Y;"1+mz(i)  

Y~~(F)Y~~(~)Y~~~~l(k)Y~~~~Z(k)Y ,"(R,, 

(24) 
(equation (4.6.8) in Edmonds (1960)), we find the coefficient of Y;"(F)Yy(k) in 

as 
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m m ' m M  The computation of the coefficients C,,lYl,$12;n~,~L now only requires comparison of 
the C(r  + 0) obtained from equation (18) and that given in equation (21), and equating 
the coefficient of Lfj'"'2(R2) in both of these results. This comparison is possible on 
account of the orthogonality of LG'"(x) given explicitly by 

r + ;  --x r + ;  r ( n + I + $ )  lom x e L, (x)LfS' dx=S,,,,, 
n !  

and the equation 

x Y - l  - x  @ r(mY - 
n ! T ( y - p - n ) '  

lom e L,,(x)dx =(-1)" 

which are equations (7.414 (3 , l l ) )  in Gradshteyn eta1 (1965). Substituting the value of 
C~lYl~fn22:~;~NL thus calculated into equation (1 l), we finally arrive at 

(11, m l ;  12, m21A, m l f m d ( n l ,  NL; A In111, n2L;A) 

l ,2(-l)N(nl!n2!n! (211+1)(212+1) r ( n l + ~ l + $ ) r ( n 2 + / 2 + $ )  '" 
= 277 ) ru+$) N !  (21 + 1)(2L + 1) r ( n  + 1 +$)T(N + L +$) 

x 1 (- l ) A Z + t I + t Z + k + P  '6 1,A l + A z + k  
A l A z f l r z k  

D; ( I , - A , + A z + k ) + r , - p ,  

X 
( 1 + D ) I (I1 +U+r,+ I2 

pl ! (k  - - p l ) ! ( t l - - p l ) ! ( t 2 -  k +pl ) ! (n l  - t l ) ! (nz - t J !  
(ti + t2 + (il + i2 - I - ~ ) / 2 ) ! r ( t ~  + tZ + (il + i2  - I + L + 3)/2) 

X 

~ r ( t ~ + i ~ + $ ) r ( t ~ + i ~ + $ ) ( t ~ + t ~ + ( i ~ + i ~ - i -  L ) / ~ - N ) !  

( 2 k  + l ) ! k !  
X 

T ( k  +5)[(2A1)!(2A2)!(211-2A1+ 1)!(21~-2A2+ 1)!]"2 

x ( A i ,  0 ;  A z ,  0 I A I  + A z ,  O X A i  + A z ,  0 ;  k, 0 I L O )  

X ( A I , P I ; ~ I - A I ,  ml-wI11 ,  m d ( A z , p ~ ;  h - A 2 , m 2 - ~ 2 1 h , m d  

X ( A I ,  P I ;  A z ,  C L Z I  A I  + A 2 ,  F I  + C L Z ) ( A I  + A z ,  ~1 + P Z ;  k ,  q 11, m> 

X(11 - A I ,  ml - P I ;  1 2 - A 2 ,  mz-pz  lA12,  mi+ mz-p l  - p d  

~ ( A I z ,  m l + m z - p 1 - ~ 2 ;  k ,  - q l L , M )  

A i z @ i @ z ( I  

x (11 - A I ,  0 ;  12 - A 2 ,  0 I A 1 2 , O ) ( A 1 2 , 0 ;  k,  0 I L,  O X l ,  m ;  L, M 1 A ,  m + M ) ,  (26) 
where m =p1+g2+q ,  M = m l + m 2 - p l - p : ! - q  (and therefore m l + m 2 = m + M )  
and many of the Clebsch-Gordan coefficients appearing in this equation correspond to 
stretched configurations. Note that we have replaced the m-summation appearing in 
equation (11) by a summation over q, which can be done since the two are not 
independent. 

Next we wish to perform the summations over the three magnetic quantum numbers 
pi,  p2,  q appearing on the right-hand side of the above equation, in such a 
manner as to be able to factorise the magnetic quantum numbers dependent part 
(11, m i ;  12, m2l A ,  m2+m2). Then we shall be left with an invariant expression for the 
TMB which we are interested in. 
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Next we examine the PI- ,  p2-summations. For this purpose, we use 
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On substituting from equations (28 )  and (30 )  in equation (26 )  and cancelling the 
factor (II ,  m l ;  1 2 ,  mzlA, ml + m z )  on both sides, we finally arrive at 

where, to simplify the phase, we have used the fact that ll - A  + I2 - A Z  + A 1~ is an even 
integer. 

In the above equation we have our expression for the TMB bracket, which contains 
only seven summations, since the stretched 6- j  symbol has none, whereas the doubly 
stretched (row-wise) 9-j  symbol has only one summation (Jucys and Bandzaitis 1965, 
Sharp 1967). Again, all the Clebsch-Gordan coefficients appearing in this equation 
can be explicitly given without any summation. These various quantities are given 
below: 

(2A1)!(2Az)’ (1 - k ) !  
(A 1, 0 ;  12,  0 I I - k, 0) = (--:) __I 

( 2 1 - 2 k ) !  A l ! A 2 ! ’  

(21 - 2 k ) ! ( 2 k ) !  ’” 1 !  ( I  - k ,  0 ;  k, 0 I I ,  0) = (-----) 
(21)! ( I -  k ) ! k ! ’  (33 )  
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(35) 
[$(L + k + A  1 2 ) ] !  

X 
[i (L + k - A  12)]![$(L - k + A  12)]![$(-L + k + A  12)]!’  

( 2k ) ! (21 -  2 k ) ! (  1 + L + A + 1)!(1+ L - A ) ! ( I  - L + A ) ! ( L  - k + A 12)! 

(21 + l)!(- I+L +A)!(L+ k - A 1 2 ) ! ( - L +  k +A12)!(L + k +A12 + l ) !  

(36) 
(- I + k + A + A 1 2 ) !  

( ( 1  - k + A  - A 1 2 ) ! ( 1 -  k - A  +A12)! (1-  k + A  +A12+ l ) !  

(211 - 2A 1 )  ! (2I2 - 2A 2 )  ! 
=((211+1)!(21~+1)!(21-2k+l)!  

(il + i2 + A + i)!(il + l2  - A )!(ll - I~ + A ) !  
X 

(- 11 + 12 + A )! 

( I  - k + A  12 + A  + l)!(I-  k - A 1 2  + A ) ! ( /  - k + A 1 2  - A ) !  
( - I  + k + A l z +  A ) !  

(- I1 + 12 + A 1 - A 2  + A 12)! 

( ( 1 1 + 1 2 -  1 + k + A 1 2 +  l)!(Il-  I 2 - A 1  +A2+A12)!(11+ 12- I +  k -A12)! 

x c  (-1Y 
I 

(- 1 + k +A12 + A  + z ) ! ( - I ~  + I,+ A + z ) !  
z ! ( I -  k SA12-h  - Z ) ! ( - I i +  I2 + A l - A 2 - I +  k + A  + 2)!(2A + 1 + z)! X 

(37) 

(equations (3.7.17) and (6.3.1) in Edmonds (1960) and equation ( A 2 )  in Alisauskas and 
lucys (1971)). 

Using the duplication formula 

(38) 
1 

r ( 2 4  = - 2 2 2 - 1 r ( z ) r ( ~  +$), JT 
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(39) 

( L - k  + A 1 2 ) ! [ $ ( L + k + A 1 2 ) ] !  

( L  + k + A 1 2 +  l)![$(L + k -A12)]![$(L - k +Aiz)]![&-L + k +Ai2)]! 
X 

( - I  + k + A 1 2 +  A + z ) ! ( - I ~  + 12 + A  + z)! 
~ ! ( l -  k + A 1 2 - A  - ~ ) ! ( - / 1  + / 2 + A l - A 2 -  I + k + A  + ~ ) ! ( 2 h  + 1 + z ) !  

X 

[tl + t2 + (il + i2 - i - ~ ) p ] ! r ( t ~  + t2 + + i2 - I + L + 31/21 
(nl-tl)!(n2-t2)!r(tl+~1+q)r(t2+iZ+~) 

X 

X ( t i  + t 2  + (11 + 12- 1 - L)/2 - N ) !  

Above we have attempted to write the TMB as a single sum of products of a 
geometrical (radial quantum number independent) and a non-geometrical (radial 
quantum number dependent) part; each of these parts involves only three summations. 
If we compare our result with Trlifaj’s (1972) we note that we have only one overlapping 
summation between these parts, whereas the formula of Trlifaj contains three such 
summations, though the total number of summations is the same (seven) as in our 
formula. The non-geometrical part in our formula agrees with that in Dobez’ and the 
number of overlapping summations is also the same (one). However, in our formula the 
geometrical part contains only three summations, whereas in Dobez’ (1977) formula 
there are six. Naturally, our expression, which combines the advantages of both 
Trlifaj’s and Dobez’ formulae, should be more useful from the computational point of 
view. It is also hoped that the simplicity of our expression will provide guidance in 
arriving at (possibly) a simpler expression for the TMB with manifest well-known 
symmetries. 
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4. Special cases 

4.1. D = 0 

In this case, evidently, A 1  = ~, A2 = k = p1 = t l  = 0 ,  1 = 11, A12  = l2 = L ;  then summing 
over the remaining z and t2, we arrive at 

4.2. D = 

In this case, evidently, A 2  = 12, A 1 = k = p1 = t 2  = 0 ;  1 = 1 2 ,  A 1 2  = l1 = L ;  then summing 
over the remaining z and t l ,  we arrive at 

4.3. 1 = 0 

In this case, A = A 2  = k = 0, which results in p 1 =  0 and A 1 2  = A  = L, which then gives 
z = 0. Thus we are left with the t l ,  tz  summations only. Indeed 

( n o ,  NL;  A Inll l ,  n 2 1 2 ;  A )  
1 1/2  

=TT (- l )N(l l ,  8 ;  12, OIL, 0 )  

n1!n2!n!  ( 2 1 ~ + 1 ) ( 2 [ ~ + i )  r(n1+i,+%)r(n2+i2+4) 
' (2L + 1) * T ( n  + $)r(N + 1, + 3) 

where 

[&1+12+L)]! 

[h(l1+- l 2  -L)]![i(l1- E2 + L)]![h(- I 1  + 12 +L)]! '  
X 

The expression in equation (41) is the same as that appearing in equation (11) in 

Finally, we wish to remark that the transformation in equation (6 )  is an orthogonal 
Trlifaj (1972). 

transformation, since if 

[ l /( l+ D)]1'2 [ D / ( l  + D)]1'2 
T = (  -[Di(i ri/(i +D)]  1/2) 
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TT' = 1. In fact, this is also a unitary unimodular transformation since T is real and 
det T = 1, The computation of the TMB for a general SU(2) transformation 

with 

TT+=1, det T= 1, 

is essentially identical to that given in this paper. 
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